If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+336x+128=0
a = 40; b = 336; c = +128;
Δ = b2-4ac
Δ = 3362-4·40·128
Δ = 92416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{92416}=304$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(336)-304}{2*40}=\frac{-640}{80} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(336)+304}{2*40}=\frac{-32}{80} =-2/5 $
| 2/3s-3=-3 | | -5m+(-19m)=14 | | (3x+88)+(x+36)+(2x-10)=180 | | -5=6x+4+7x | | 9x+2=-3+7x+19 | | 1/7=z/3 | | 5x+10=3x~4 | | 13x^2+47x+2=0 | | 3y-5-y=5=5 | | 12x^2+47x+2=0 | | 224=7n+4(6n-6) | | x/0.6=9/1.2 | | X-5/6=6x+1/8 | | 4c-9=11 | | t-2/3=4 | | 8/3(3x+2)+32=16/3 | | 4/5x-18=58 | | 5x-1(12)=7x(2x+2) | | 53y-y^2=196 | | 2x-2=–5 | | (3x+94)+(x+18)+(2x-4)=180 | | x/x+5-4/x+7=8x+4/x^2+12x+35 | | 5x-4=3+3x | | -1/2(4x+6)=-23 | | 12-6d=-6 | | (3+u)(4u+6)=0 | | 6x^2+8x-49=0 | | 11x+4.82=37.82 | | -6(-2r-7)=114 | | 10.5y+203-4y=0 | | 2(6x-5=-58 | | t÷4-4=9 |